A Characterization of Functions Having Zygmund's Property

O. SHISHA
Mathematics Research Center, Code 7840, Naval Research Laboratory, Washington, D.C. 20375

1. Let $-\infty<a<b<\infty$. Given a real function f, we say that it has Z ygmund's property in $[a, b]$ iff it is continuous there, and for some constant A,

$$
\begin{equation*}
|f(x)-2 f(x+h)+f(x+2 h)| \leqslant A h \tag{1}
\end{equation*}
$$

whenever $a \leqslant x<x+2 h \leqslant b$.
By using the method of proof of Theorem (3.4) of [1], one can show that "continuous" in the last sentence can be replaced by "defined and bounded."

If $b-a>2 \pi$, if f is a 2π-periodic real function on ($-\infty, \infty$), and if it has Zygmund's property in $[a, b]$ with a constant A, then (1), with some constant A^{\prime} replacing A, holds whenever $-\infty<x<x+2 h<\infty$; further, by a fundamental result of Zygmund [2, Theorem 8], for $n=1,2, \ldots$ there is a $t_{n} \in T_{n}$ for which

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|f(x)-t_{n}(x)\right| \leqslant B / n, \tag{2}
\end{equation*}
$$

B being a constant, where T_{n} is the set of all trigonometric polynomials of the form $a_{0}+\sum_{k=1}^{n} a_{k} \cos (k x)+b_{k} \sin (k x)$, with real a 's and b 's.

Conversely, if for $n=1,2, \ldots$ there is a $t_{n} \in T_{n}$ satisfying (2) for some constant B and some real function f on ($-\infty, \infty$), then, by Zygmund's result, (1) holds whenever $-\infty<x<x+2 h<\infty, A$ being some constant.

The purpose of the present note is to characterize functions having Zygmund's property in $[a, b]$ by means of a sequence L_{n} of families of extremely simple functions which, like trigonometric polynomials, are very natural in the context of contemporary approximation theory.
2. For $n=1,2, \ldots$ set $x_{k}^{(n)}=a+k(b-a) n^{-1}, k=0,1, \ldots, n$, so that $\left(x_{k}^{(n)}\right)_{k=0}^{n}$ partitions $[a, b]$ into n congruent subintervals $\left[x_{k-1}^{(n)}, x_{k}^{(n)}\right]$, $k=1,2, \ldots, n$. Also, for $n=1,2, \ldots$ let L_{n} be the set of all real functions with domain $[a, b]$ which are linear in each such subinterval.

Theorem. Given a real function f on $[a, b]$, a necessary and sufficient
condition for it to have Zygmund's property in $[a, b]$ is that for $n=1,2, \ldots$ there exists an $\ell_{n} \in L_{n}$ such that

$$
\begin{equation*}
\sup _{a \leqslant x \leqslant b}\left|f(x)-\ell_{n}(x)\right| \leqslant C / n, \tag{3}
\end{equation*}
$$

C being a constant.
3. Lemma. Let f^{*} be a real function, continuous in $[0,1]$, and let ℓ^{*} be the linear function with domain $[0,1]$ satisfying $\ell^{*}(0)=f^{*}(0), \ell^{*}(1)=$ $f^{*}(1)$. Suppose, for some constant A, (1) (with f^{*} replacing f) holds whenever $0 \leqslant x<x+2 h \leqslant 1$. Then

$$
\begin{equation*}
\left|f^{*}(x)-\ell^{*}(x)\right| \leqslant A / 2 \quad \text { throughout }[0,1] \tag{4}
\end{equation*}
$$

Proof of the Lemma. We assume, as we may, that $\ell^{*}(x) \equiv 0$ (otherwise, replace f^{*} by $\left.f^{*}(x)+\left[f^{*}(0)-f^{*}(1)\right] x-f^{*}(0)\right)$. We shall show that if $0 \leqslant y \leqslant 1, y=\sum_{k=0}^{n} a_{k} 2^{-k}, n \geqslant 0$, where each a_{k} is 0 or 1 , then

$$
\begin{equation*}
\left|f^{*}(y)\right| \leqslant(A / 2)\left(1-2^{-n}\right) \tag{5}
\end{equation*}
$$

This will imply (4), since if $0 \leqslant x \leqslant 1, x=\sum_{k=0}^{\infty} a_{k} 2^{-k}$, where each a_{k} is 0 or 1 , then $\left|f^{*}(x)\right|=\lim _{n \rightarrow \infty}\left|f^{*}\left(\sum_{k=0}^{n} a_{k} 2^{-k}\right)\right| \leqslant A / 2$.

Now (5) obviously holds for $n=0$. Suppose it holds for some $n \geqslant 0$. Let $0 \leqslant y \leqslant 1, y=\sum_{k=0}^{n+1} a_{k} 2^{-k}$, where each a_{k} is 0 or 1 . We shall prove

$$
\begin{equation*}
\left|f^{*}(y)\right| \leqslant(A / 2)\left(1-2^{-n-1}\right) \tag{6}
\end{equation*}
$$

We can obviously assume, by the induction hypothesis, that $a_{n+1}=1$. Set

$$
u=y-2^{-n-1}=\sum_{k=0}^{n} a_{k} 2^{-k}, \quad v=y+2^{-n-1}
$$

One easily sees that $0<v \leqslant 1, v=\sum_{k=0}^{n} a_{k}^{\prime} 2^{-k}$, where each a_{k}^{\prime} is 0 or 1 . Thus

$$
\begin{align*}
& \left|f^{*}(u)\right| \leqslant(A / 2)\left(1-2^{-n}\right) \tag{7}\\
& \left|f^{*}(v)\right| \leqslant(A / 2)\left(1-2^{-n}\right) \tag{8}
\end{align*}
$$

Since

$$
2 f^{*}(y)=f^{*}(u)+f^{*}(v)-\left[f^{*}(u)-2 f^{*}\left(u+2^{-n-1}\right)+f^{*}\left(u+2 \cdot 2^{-n-1}\right)\right]
$$

(6) follows from (7), (8), and (1).
4. Proof of the Theorem. Suppose f has Zygmund's property in [a,b]. Let n be a positive integer, and let $\ell_{n} \in L_{n}$ be defined by the requirement $\ell_{n}\left(x_{k}^{(n)}\right)=f\left(x_{k}^{(n)}\right), k=0,1, \ldots, n$. We shall prove:

$$
\begin{equation*}
\left|f(t)-\ell_{n}(t)\right| \leqslant(A / 2)(b-a) / n \tag{9}
\end{equation*}
$$

for every $t \in[a, b]$. Consider such a t, and let $x_{j-1}^{(n)} \leqslant t \leqslant x_{j}^{(n)}, 1 \leqslant j \leqslant n$. Define $f^{*}, \ell_{n}{ }^{*}$, with domain $[0,1]$, as follows:

$$
f^{*}(x) \equiv f\left(x_{j-1}^{(n)}+x(b-a) n^{-1}\right), \quad \ell_{n}^{*}(x) \equiv \ell_{n}\left(x_{j-1}^{(n)}+x(b-a) n^{-1}\right) .
$$

Then $\left|f^{*}(x)-2 f^{*}(x+h)+f^{*}(x+2 h)\right| \leqslant A(b-a) n^{-1} h$ whenever $0 \leqslant$ $x<x+2 h \leqslant 1$. Hence, by the lemma, $\left|f^{*}(x)-\ell_{n}^{*}(x)\right| \leqslant(A / 2)(b-a) / n$ throughout $[0,1]$. In particular, taking $x=(t-a) n(b-a)^{-1}-(j-1)$, we obtain (9).

Conversely, suppose for $n=1,2, \ldots$ there exists an $\ell_{n} \in L_{n}$ satisfying (3). Clearly f is continuous in $[a, b]$; we shall show that (1) holds whenever $a \leqslant x<x+2 h \leqslant b$, with $A=48 C(b-a)^{-1}$.

Let $a \leqslant x<x+2 h \leqslant b$. Let n_{0} be the largest positive integer n for which $[x, x+2 h]$ lies in some $\left[x_{k-1}^{(n)}, x_{k}^{(n)}\right], 1 \leqslant k \leqslant n$. Then $2 h>(b-a)\left(6 n_{0}\right)^{-1}$. For otherwise, if, say $[x, x+2 h] \subseteq I=\left[x_{k_{0}-1}^{\left\langle n_{0}\right)}, x_{k_{0}}^{\left(n_{0}\right)}\right], 1 \leqslant k_{0} \leqslant n_{0}$, then $[x, x+2 h]$ would lie either in one of the two (closed) halves of I or in the (open) middle third of I. In each case, the maximality of n_{0} is contradicted.

Using the linearity of $\ell_{n_{0}}$ in $[x, x+2 h]$, we have:

$$
\begin{aligned}
\mid f(x)- & 2 f(x+h)+f(x+2 h) \mid \\
= & \mid\left\{f(x)-\ell_{n_{0}}(x)\right\}-2\left\{f(x+h)-\ell_{n_{0}}(x+h)\right\} \\
& +\left\{f(x+2 h)-\ell_{n_{0}}(x+2 h)\right\} \mid \\
\leqslant & 4 C / n_{0} \leqslant 48 C(b-a)^{-1} h .
\end{aligned}
$$

The necessity of the condition of the theorem follows also from Zusatz 1.2 of [3] and from Theorem 2 of [4].

References

1. A. Zygmund, "Trigonometric Series," Vol. 1, 2nd ed., Cambridge University Press, 1959.
2. A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47-76.
3. J. NitsCHe, Sätze vom Jackson-Bernstein-Typ für die Approximation mit SplineFunktionen, Math. Z. 109 (1969), 97-106.
4. K. Scherer, On the best approximation of continuous functions by splines, SIAM J. Numer. Anal. 7 (1970), 418-423.
